Henckelia longisepala (Gesneriaceae), a new record for Vietnam

Bui H.Q.1,2, Nuraliev M.S.4,5, Möller M.5, Kuznetsov A.N.3, Kuznetsova S.P.3, Middleton D.J.6 & F. Wen7,8

1 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
2 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
3 Joint Russian-Vietnamese Tropical Scientific and Technological Center, Cau Giay, Hanoi, Vietnam.
4 Department of Higher Plants, Biological Faculty, M.V. Lomonosov Moscow State University, 1,12 Leninskie Gory, Moscow – 119 234, Russia.
5 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK.
6 Herbarium, Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259689 Singapore.
7 Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region, Guangxi Zhuangzu Autonomous Region, Chinese Academy of Sciences, Guilin – 541 006, China.
8 Gesneriad Conservation Center of China (GCCC), Guilin Botanical Garden, Chinese Academy of Sciences, Guilin – 541 006, China.

E-mail: max.nuraliev@gmail.com

Abstract: *Henckelia longisepala* (H.W.Li) D.J.Middleton & Mich. Möller is reported from Lai Chau and Nghe An provinces of Vietnam as a new national record of the species. An amended morphological description and photographic illustrations are provided. The distribution of *H. longisepala* is discussed with an emphasis on the floristic regions inhabited by this species. A specimen at KUN is selected for a second-step lectotypification. Two floral morphologies were found in *H. longisepala* that differ in the length of the pistil and its significance is discussed here.

Keywords: Floral phenology, Floristic regions, *Hemiboeopsis*.

Introduction

The genus *Henckelia* Spreng. (Gesneriaceae) has recently been re-circumscribed based on molecular and morphological evidence (Weber et al., 2011; Middleton et al., 2013; Möller et al., 2016). With the current delimitation, *Henckelia* consists of at least 70 species, mainly distributed across South, East and Southeast Asia, including the Himalayan region (Weber et al., 2011; Middleton et al., 2013; Möller et al., 2017; Krishna & Lakshminarasimhan, 2018; Borah et al., 2019; Cai et al., 2019; Sirimongkol et al., 2019; Yang et al., 2019; Janeesha & Nampy, this issue; Kanthraj et al., this issue). In Vietnam, six species of *Henckelia* have been recorded, namely, *H. anachoreta* (Hance) D.J.Middleton & Mich. Möller, *H. ceratophyllum* (B.L.Burtt) D.J.Middleton & Mich. Möller, *H. fruticola* (H.W.Li) D.J.Middleton & Mich. Möller, *H. grandifolia* A.Dietr., *H. pumila* (D.Don) A.Dietr. and *H. speciosa* (Kurz) D.J.Middleton & Mich. Möller (Wang et al., 1998; Ho, 2000; Phuong, 2005, 2017; Weber et al., 2011), all of which were formerly treated in the genus *Chirita* Buch.-Ham. ex D.Don (Wang et al., 2011; Weber et al., 2011). These species are also recorded from the southern regions of China (Wang, 1985; Wang et al., 1990, 1998; Wei et al., 2010; Weber et al., 2011). During field investigations in Lai Chau province, Northwestern Vietnam, and Nghe An province, North Central Vietnam, in 2018, we collected several specimens of Gesneriaceae, which after careful study of relevant specimens and taxonomic publications from adjacent regions (Pellegrin, 1926, 1930; Wang, 1985; Wang et al., 1990, 1998; Weber et al., 2011; Middleton et al., 2013; Möller et al., 2016; Xu et al., 2017) were identified as *Henckelia longisepala* (H.W.Li) D.J.Middleton & Mich. Möller.
Prior to the re-circumscription of *Henckelia* (Weber et al., 2011), this species was placed in the monotypic genus *Hemiboeopsis* W.T.Wang, which reflected its remarkable morphology (Wang et al., 1998). As highlighted by Wang (1984), *H. longisepala* was unusual at that time among Gesneriaceae in its stamen filaments being broadest at the middle and tapering towards ends (although this is now known in many other species of the family), anther connectives with a single triangular appendage, two unequal stigmas, and apparently two-loculed ovary. *Henckelia longisepala* is reported to occur in the Yunnan province of China and in Laos (Wang, 1984; Li, 1991; Wang et al., 1990, 1998; Weber et al., 2011), but was not included in the Checklist of Laos by Newman et al. (2007). The collections from Vietnam are a new record for the country. Here, we provide a detailed description and field photographs of our records to facilitate its easier identification in the future. We also confirm with specimen citations below that the reports of *H. longisepala* for Laos (Wang et al., 1998; Weber et al., 2011) are correct, and specify its localities within Laos. We summarize the available data on the distribution of this species, highlighting the floristic regions of Eastern Indochina, and discuss the flower structure and phenology in *H. longisepala*. Finally, we provide a second-step lectotypification of *H. longisepala* because there are two herbarium sheets of the type collection at the herbarium of the supposed lectotype.

Figs. 1–3

Subshrubs, terrestrial, 25–80(100) cm tall; underground part a short vertical rhizome. Stems simple, apically densely brownish appressed pubescent, basally glabrescent. Leaves opposite, equal to subequal in a pair; petioles 1.5–5.5 cm long, covered with long appressed brownish hairs when young, glabrescent; leaf blade ovate to ob lanceolate, 9–24 × 3–6.5 cm, base attenuate to broadly cuneate, margins repand-crenulate to nearly entire, apex acuminate, glabrous to sparsely ciliate, especially abaxially on veins and especially when young, adaxially dark green, abaxially glaucous-green or sometimes dark purple; secondary veins 8–17 pairs; midvein and secondary veins prominent on both surfaces. Inflorescences axillary, 3–9-flowered dense umbel-like cymes. Peduncles 1.5–2 cm long, pubescent or (in Vietnamese plants) glabrescent. Each branch of cyme subtended by a bract; 2 basal bracts opposite, adjoining, forming a globose involucre, nearly orbicular to ovate-orbicular, 1.7–2 × 1.7–2.5 cm, thick leathery especially along midrib, glabrous or abaxially pubescent, purplish white to dark purple; other bracts similar to basal bracts but more delicate and somewhat smaller. Pedicels 3–6 mm long, glabrous, purple. Sepals apparently free (tube lacking), equal, spathulate, 12–20 × 2.5–3 mm, base cuneate, margin entire, apex rounded, glabrous, white with purple tint especially towards apex to entirely purple. Corolla zygomorphic, 3.5–4.5 × c. 1.3 cm, purple to white, inside with two elevated yellow stripes on lower (abaxial) surface; tube funnelform-tubular, not swollen, slightly bent in adaxial direction, much longer than limb, 2.5–3.5 cm long, glabrous outside and inside; limb 2-lipped, glabrous or (in Vietnamese plants) adaxially uniformly covered with dense very short hairs; adaxial lip 2-lobed, 0.5–1 cm long, shorter than abaxial lip; abaxial lip 3-lobed, 1.1–2.1 cm long, lobes equal; all five lobes semicircular, with overlapping margins. Stamens 2 abaxial (lower), adnate to corolla tube abaxially behind middle, included, c. 1.5 cm long; filaments conspicuously swollen in middle part (fusiform), 1–1.5 mm broad at middle, c. 0.4 mm broad at base and apex, glabrous to puberulent near apex, whitish; anthers dorsifixed, coherent by adaxial surfaces, ellipsoid, 2.8–3.2 mm long, abaxially puberulent.
Henckelia longisepala (Gesneriaceae), a new record for Vietnam

Fig. 1. Henckelia longisepala (H.W.Li) D.J.Middleton & Mich.Möller collected from Lai Chau province: a. Habit; b. Leaf-adaxial view; c. Cyme-front view; d. Cyme-view from below; e. Cyme-side view; f. Cyme with young capsules; g. Basal bract of cyme; h. Flower bud and two inflorescence bracts; i. Corolla-adaxial view; j. Flower bud-side view; k. Corolla cut-open showing pistil, stamens and staminodes; l. Longitudinally dissected corolla showing androecium and pistil with disc; m. Stamens and staminodes; n. Pistil and disc; o. Ovary base with disc; p. Stigmas (from H.Q. Bui 215; photos by H.Q. Bui).
Fig. 2. *Henckelia longisepala* (H.W.Li) D.J.Middleton & Mich.Möller collected from Nghe An province: a. Habit; b, c. Cyme-adaxial view; d, e. Flower-oblique view; f. Flower-adaxial view; g. Flower-side view; h. Long-styled flower-front view; i. Short-styled flower-front view (from M.S. Nuraliev, A.N. Kuznetsov & S.P. Kuznetsova 2168; photos by M.S. Nuraliev).
with dense tuft of hairs, creamy white or dark purple; thecae divaricate, confluent, dehiscing longitudinally; connectives each with 1 abaxial appendage, appendage triangular, 0.5–1.8 mm long. Staminodes 3; 2 staminodes paired, adaxial (upper), adnate to corolla tube adaxially slightly behind fertile stamens, c. 1 cm long, filaments without swellings, thinner than those of fertile stamens, covered by long spreading hairs throughout their length, whitish, antherodes small, greenish; median (unpaired adaxial) staminode club-shaped, ≤1 mm long, greenish white. Disc ring-like, 1–2 mm long, brownish yellow. Pistil included, 2.1–2.6 cm long (but see below), white; ovary superior, linear, 2-loculed, 0.9–1.1 cm long, glabrous, becoming green after anthesis; placentas 2, axile; style c. 1.5 cm long, sparsely glandular puberulent; stigmas 2, strongly unequal: adaxial small, about 1 mm long, semiobicular, abaxial large, about 2.5 mm long, broadly flabellate, emarginate; stigmatic surface densely minutely pubescent. Immature capsules straight in relation to pedicel, linear, much longer than calyx; valves probably 2, straight, not twisted. Mature capsules 6–10 cm long. Seeds unappendaged, fusiform, c. 0.25 mm long, dark brown.
Flowering & fruiting: Flowering from April to June and fruiting from May to August.

Habitat: Henckelia longisepala occurs at elevations of 100–1300 m (across its entire distribution range). In Lai Chau province, it was found on the shady sides of rocks, under the canopy of evergreen broadleaf moist forest, often near streams and in other wet habitats, together with representatives of the genera Cyathea Sm., Lindera Thunb., Elatostema J.R.Forst. & G.Forst., Ficus L. and Carex L. In Nghe An province (Pu Hoat Nature Reserve), it is extremely common, at least within a radius of c. 2 km, and was observed in a wide range of habitats, including areas along a river and by streams and on local mountain slopes.

The population of H. longisepala found in Lai Chau province of Vietnam is located within the overall region known to be inhabited by this species in China, with the distance from the Lai Chau population to the nearest Chinese population being only about 30 km (Fig. 4).

Populations from both Lai Chau and Yunnan lie within the borders of the Sikkang-Yunnan floristic region, which belongs to the Holarctic floristic kingdom (Takhtajan, 1986; Averyanov et al., 2003a, 2003b; Fu et al., 2019). The population from the Vietnamese Nghe An province, together with the specimens from the neighbouring Laotian Xiangkhouang province (each is about 150 km from the former), in contrast, is found in the North Indochinese floristic region of the Paleotropical floristic kingdom. The North Indochinese populations are about 300 km south of the nearest Sikkang-Yunnan populations. The distribution of H. longisepala confirms that the species occurs not only in subtropical, but also in tropical environments, although its habitat preferences across these regions are similar.

Distribution: China, Laos and Vietnam.

Henckelia longisepala (Gesneriaceae), a new record for Vietnam

Kuznetsova 2168 (IBK, MW [MW0756077], SING [SING0283527]).

Conservation status: The Extent of Occurrence (EOO) and probable Area of Occupancy (AOO) are both greater than the limits of any of the threat categories and >10 populations are known to exist, even if the actual AOO is actually lower than our estimate and below the threshold for Vulnerable. Consequently, H. longisepala is assessed here as Least Concern (LC) (IUCN Standards and Petitions Committee, 2019). In Vietnam at the Pu Hoat Nature Reserve the species is common and the number of mature plants is estimated to be at least several hundreds. In Yunnan, however, H. longisepala has been listed amongst ‘Plant Species with Extremely Small Populations (PSESP)’ (Yang & Yang, 2014), suggesting that it may require a national assessment in China in one of the threat categories.

Nomenclatural notes: The protologue of Lysionotus longisepalus (Li, 1983) contains a list of studied specimens, of which one collection (“K.H. Tsai [Cai] 464”) was indicated as “Typus!””. When he published the combination in Hemiboeopsis, Wang (1984) indicated a duplicate of this specimen at KUN as “holotypus” and another duplicate at PE as “isotypus”, which at that time met the conditions for effective lectotypification (Art. 7.11 of ICN, Turland et al., 2018; see also McNeill, 2014). However, we have found that there are two specimens of the collection K.H. Cai 464 deposited in KUN (KUN1219162 and KUN1219165).
Wang’s choice (1984) is a first-step lectotypification (Art. 9.17) and a second step is desirable. We have selected the specimen at KUN with barcode KUN1219162 as the lectotype in a second step because it is in better condition and better shows the salient characters of the species. The specimens at PE (PE00030765) and KUN (KUN1219165) are isolectotypes.

Notes on inflorescence bracts: Henckelia longisepala was previously described as having only two basal bracts in the cymes (Li, 1983; Wang, 1984; Wang et al., 1998). This is consistent with the descriptions provided for other species of this genus, irrespective of the number of flowers in a cyme (e.g., Borah et al., 2019; Cai et al., 2019; Sirimongkol et al., 2019; Yang et al., 2019). According to Möller et al. (2018), it is also the most common condition for the family Gesneriaceae in general. In our investigation of H. longisepala, in contrast, each of the cyme branches (including the single lateral flowers) was found to be subtended by a bract (Figs. 1e, h, 2b). We suppose that the subtending bracts of the branches of higher order were overlooked in previous studies of H. longisepala because the basal bracts are most evident and easily observed. In fact, in angiosperms in general, the branching nearly always occurs in an axil of a phyllome, and thus one (in case of monochasial branching) or two (in case of dichasial branching) bracts are normally observed at each node of a cymose inflorescence (Endress, 2010).

Examples of an apparent lack of a subtending phyllome are usually the result of phyllome reduction, whereby the reduced bracts can frequently be observed at early stages of inflorescence development. The latter phenomenon is perhaps characteristic of most Gesneriaceae.

Notes on variation in flower morphology: Observations conducted by one of the authors (MSN) in Pu Hoat Nature Reserve revealed that H. longisepala shows variation with respect to the relative position of the stigmas and the fertile anthers. The difference is most probably due to differences in the pistil length, whereas the fertile stamens within the two morphologies are of the same structure. In the short-styled flower (Figs. 2d, i, 3b, d, e), the stigmas occupy a significantly more proximal position than the fertile anthers (behind them), being located approximately at the level of the vestigial anthers of the staminodes, while in the long-styled flower (Figs. 2e, h, 3a, c), the stigmas occupy a slightly more distal position than the fertile anthers (i.e., in front of them). A possible explanation for the different floral morphologies is that the flowers are strongly protandrous and that the flowers have simply been observed at different stages of anthesis. Indeed, significant ovary and style elongation during anthesis is known in genera of Gesneriaceae other than Henckelia, particularly in species of Aeschynanthus Jack (Middleton, 2007) and Oreocharis Benth. (Möller et al., 2018). Strong protandry is often associated with bird pollination in Gesneriaceae (Burtt & Woods, 1975), although this would appear to be unlikely in Oreocharis and H. longisepala which otherwise have flowers typical for insect pollination. In our study, there did indeed appear to be some correlation between style length and the stage of anthesis of the flower as assessed by the appearance (freshness) of the corolla. However, in some cases, the short style morph was found in flowers with anthers which had dehisced some time before, which indicates that the possible pistil elongation takes place unusually long after the male stage of flowering is over (Fig. 3b). In Aeschynanthus, in contrast, the elongation of the style and ovary begins as soon as the stamens begin to wither and not after (pers. obs., DJM). The differences between Aeschynanthus and H. longisepala would suggest that the great lengthening of the styles is not necessarily employed for the same reasons or at least that the relative timing of each stage is markedly different.

Variation in pistil length among flowers of a given species is known in angiosperms that possess such kinds of stylar polymorphism as stigma-height dimorphism and heterostyly. Heterostyly implies a difference between the floral morphs in the position not only of the stigmas, but also of the anthers, i.e., stamen polymorphism as well as stylar polymorphism with opposite occurrence of short and long types of corresponding organs. Stylar polymorphism other than enantiostyly is quite rare in the family.
Gesneriaceae and has so far only been reported for one New World genus, Besleria L. (Podolsky, 1993; Barrett et al., 2000; Gao et al., 2006; Möller et al., 2019; Raju, 2019).

It is currently still unclear whether the polymorphism in *H. longisepala* is due to especially strong protandry or whether the species really possesses different floral morphs. A comprehensive study of the floral morphologies in *H. longisepala* is needed, including direct measurements of floral parts in a representative number of flowers and individuals, and observations on the dynamics of floral architecture from flower opening until withering. In particular, studies are lacking on the relative role of the various flower organs in pollination processes at the supposed different stages of anthesis. Finally, our results highlight the need for careful field studies and observations in other species of Gesneriaceae, particularly with regard to floral phenology and pollination.

Acknowledgements

We are indebted to Chun-Lei Xiang for his help with getting images of the specimens at KUN. We thank Eugene S. Popov for providing the map of Southeast Asia. We are grateful to the international cooperation mission with Russia, supported by the Vietnam Academy of Science and Technology (VAST) (Code Mission: QTRU01.09/19–20), and funding support by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.03–2017.300. The work of Maxim S. Nuraliev was supported by the Russian Foundation for Basic Research (project 19-54-54007) and conducted in accordance with Government order for the Lomonosov Moscow State University (project No. AAAA-A16-116021660105–3). We further like to thank the anonymous reviewers for constructive comments on the manuscript. The Royal Botanic Garden Edinburgh is supported by the Scottish Government’s Rural and Environmental Science and Analytical Services Division. The work of David J. Middleton is supported by Singapore’s National Parks Board.

Literature Cited

Henckelia longisepala (Gesneriaceae), a new record for Vietnam

